

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA DEPARTMENT OF AUTOMOTIVE ENGINEERING

FIRST SEMESTER EXAMINATIONS 2018/2019 ACADEMIC SESSION

COURSE:

GNE 415 Engineering Analysis

(3 Units)

CLASS:

400 Level General Engineering

HOD'S SIGNATURE

TIME ALLOWED:

3hrs

INSTRUCTIONS:

Answer Five (5) questions.

Date: March, 2019

Question 1

1a. Show that the real and imaginary parts of the function $w = \log Z$ satisfy the Cauchy – Riemann equation when Z is not zero. 5 marks

b. Find the image and draw a rough sketch of the mapping of the region $1 \le x \le 2$ and $2 \le y \le 3$ under the mapping $W = e^z$

Question 2

2a. Find from first principle the Laplace transform of
$$f(t) = \begin{cases} Cos\left(t - \frac{2\pi}{3}\right), t > \frac{2\pi}{3} \\ 0, 0 < t < \frac{2\pi}{3} \end{cases}$$
 3 marks

b. Find the Laplace of t Sinh at

3 marks

c. Solve the following differential equation using Laplace Transform

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = 6te^{-t}$$
 given that $y = 0$ and $\frac{dy}{dt} = 0$ at $t=0$

6 marks

Question 3

3a. A periodic function f(t) of period 2a is defined by $f(t) = \begin{cases} a \text{ for } 0 \le t < a \\ -a \text{ for } a \le t \le 2a \end{cases}$ show that

 $\mathcal{L}{f(t)} = \frac{a}{s} \tanh\left(\frac{as}{2}\right)$. Recall that for a periodic function f(t) of period $\alpha > 0$

$$\mathcal{L}{f(t)} = \frac{1}{1 - e^{-s\alpha}} \int_0^{\alpha} e^{-s\alpha} f(t) dt$$

6 marks

b. Find the inverse Laplace transform of $\frac{3s-1}{(s-3)(s^2+4)}$

6 marks

Question 4

4. Find the Fourier transform of the following; (a)
$$f(t) = \begin{cases} 0, & t < -2 \\ 1, & -2 < t < 2 \\ 0, & 2 < t \end{cases}$$

4 marks

b.
$$f(t) = 3\Pi_4(t) + 5\Lambda_4$$

8 marks

Question 5

5. The masses of 50 ingots in kg are measured correct to the nearest 0.1 kg and the results are as shown below. Produce a frequency distribution having about 7 classes for these data and then present the grouped data as;

8.0	8.6	8.2	7.5	8.0	9.1	8.5	7.6	8.2	7.8
8.3	7.1	8.1	8.3	8.7	7.8	8.7	8.5	8.4	8.5
7.7	8.4	7.9	8.8	7.2	8.1	7.8	8.2	7.7	7.5
8.1	7.4	8.8	8.0	8.4	8.5	8.1	7.3	9.0	8.6
7.4	8.2	8.4	7.7	8.3	8.2	7.9	8.5	7.9	8.0

a develop the cumulative frequency distribution table

5 marks

b. draw a frequency polygon for the data

3½ marks

c. draw the ogive curve for the data.

31/2 marks

Question 6

6. The frequency distribution for the value of resistance in ohms of 48 resistors is as shown.

20.5-21.5

3, 22.0-23.5

10, 24.5-25.5

11,

26.0-27.5

13, 28.5-29.5

9, 30.0-31.5

2.

- a. Draw a histogram depicting this data and hence determine the mean, median and modal values of the distribution.
 8 marks
- b. Calculate the standard deviation from the mean of the resistors, correct to 3 significant figures.

4 marks

Question 7

- 7. A box contains 74 brass washers, 86 steel washers and 40 aluminium washers. Three washers are drawn at random from the box without replacement.
 - a. determine the probability that all three are steel washers

2 marks

b. determine the probability that there are no aluminium washers drawn.

4 marks

c. find the probability that there are two brass washers and either a steel or aluminium washer

6 marks